
Information Coding / Computer Graphics, ISY, LiTH

TNM084!

Procedural images

Ingemar Ragnemalm, ISY

1(77)

1(77)

Information Coding / Computer Graphics, ISY, LiTH

Lecture 9!
!

Movement! Procedural animations!!
!

Moving textures!
!

Moving particles!
!
!

Flow noise!
!

Particle systems!
!

Billboards!
!

Instancing!
!

Render to texture, FBO

2(77)2(77)

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions!
!

1. How does flow noise produce the flow animations?!
!

2. What is another way to make turbulence animations with noise
functions?!

!
3. How can you render large particle systems without sorting them?!

!
4. How do you render axial billboards?!

!
5. How can you process a large particle system on the GPU?

3(77)3(77)

Information Coding / Computer Graphics, ISY, LiTH

Turbulence!
!

The word "turbulence" is about random movement,
e.g. in water or air.!

!
It can aim to model couds, smoke, fire, water etc

where random movement is expected!
!

Has sometimes also been used to signify the
magnitude of noise, but IMHO that is gain.

4(77)4(77)

Information Coding / Computer Graphics, ISY, LiTH

Random gradients!
!

Actually, Perlin noise is already making random
gradients...!

!
...but we need some additional constraints.

5(77)5(77)

Information Coding / Computer Graphics, ISY, LiTH

Flow noise = rotate gradients!
!

Rotate gradients to produce "swirl".

6(77)6(77)

Information Coding / Computer Graphics, ISY, LiTH

in the lab code!
!

How does the gradient noise work?
float noise(vec2 st)
{
 vec2 i = floor(st);
 vec2 f = fract(st);

 vec2 u = f*f*(3.0-2.0*f);

 return mix(mix(dot(random2(i + vec2(0.0,0.0)), f - vec2(0.0,0.0)),
 dot(random2(i + vec2(1.0,0.0)), f - vec2(1.0,0.0)), u.x),
 mix(dot(random2(i + vec2(0.0,1.0)), f - vec2(0.0,1.0)),
 dot(random2(i + vec2(1.0,1.0)), f - vec2(1.0,1.0)), u.x), u.y);
}

i + (0,0)

i + (1,1)i + (0,1)

i + (1,0)

fi + offset are the corners
random2 to produce random gradient
f is local position in square
dot product for distance to corner
smoothstep for interpolation

Conclusion for flow noise: Rotate the random2!

target
position

7(77)7(77)

Information Coding / Computer Graphics, ISY, LiTH

vec2 rot2(vec2 v, float r)
{
 vec2 res;
 res.x = cos(r)*v.x + sin(r)*v.y;
 res.y = -sin(r)*v.x + cos(r)*v.y;
 return res;
}

My flow noise implementation!
!

Rotate the random2()!

float noiser(vec2 st, float r)
{
 vec2 i = floor(st);
 vec2 f = fract(st);

 vec2 u = f*f*(3.0-2.0*f);

 return mix(mix(dot(rot2(random2(i + vec2(0.0,0.0)), r), f - vec2(0.0,0.0)),
 dot(rot2(random2(i + vec2(1.0,0.0)), r), f - vec2(1.0,0.0)), u.x),
 mix(dot(rot2(random2(i + vec2(0.0,1.0)), r), f - vec2(0.0,1.0)),
 dot(rot2(random2(i + vec2(1.0,1.0)), r), f - vec2(1.0,1.0)), u.x), u.y);
}

8(77)8(77)

Information Coding / Computer Graphics, ISY, LiTH

Many variations!
!

Multiple octaves, different movement, mixing...

and they all flow!

9(77)9(77)

Information Coding / Computer Graphics, ISY, LiTH

Another approach: move in noise space!
!

Produce moving noise with 3D (or even 4D) Perlin noise!
!

Change the so far unused coordinate to produce animation!

FBM noise changing over time
10(77)10(77)

Information Coding / Computer Graphics, ISY, LiTH

Use 3D noise!
!

Affect rotation by the third noise dimension!

float noiser(vec2 v, float r)
{
 return noise(vec3(v, r));
}

float noise(vec3 st)
{
 vec3 i = floor(st);
 vec3 f = fract(st);

 vec3 u = f*f*(3.0-2.0*f);

 return mix(
 mix(mix(dot(random3(i + vec3(0.0,0.0,0.0)), f - vec3(0.0,0.0,0.0)),
 dot(random3(i + vec3(1.0,0.0,0.0)), f - vec3(1.0,0.0,0.0)), u.x),
 mix(dot(random3(i + vec3(0.0,1.0,0.0)), f - vec3(0.0,1.0,0.0)),
 dot(random3(i + vec3(1.0,1.0,0.0)), f - vec3(1.0,1.0,0.0)), u.x), u.y),

 mix(mix(dot(random3(i + vec3(0.0,0.0,1.0)), f - vec3(0.0,0.0,1.0)),
 dot(random3(i + vec3(1.0,0.0,1.0)), f - vec3(1.0,0.0,1.0)), u.x),
 mix(dot(random3(i + vec3(0.0,1.0,1.0)), f - vec3(0.0,1.0,1.0)),
 dot(random3(i + vec3(1.0,1.0,1.0)), f - vec3(1.0,1.0,1.0)), u.x), u.y), u.z

);
}

3D extension of Quilez's
gradient noise.

Same as in lab 4!

11(77)11(77)

Information Coding / Computer Graphics, ISY, LiTH

Particles in flow noise!
!

Using noise for vector fields and particle systems!
!

Much of this part is based on a presentation from
"The Coding Train". Not necessarily "by the book"

but more instructive.

https://www.youtube.com/watch?v=BjoM9oKOAKY

Online references are weak - but they do help sometimes!

12(77)12(77)

Information Coding / Computer Graphics, ISY, LiTH

Random gradients!
!

We can create random gradients...

! ! // Caclulate vector from x and y!
! ! v.x := f(x*12.9898+y*78.233);!
! ! v.y := f(x*95.9486+y*35.872);!
! ! Normalize(v); // if I want to!
! ! v := v * density / 2;!
! // Rotate vector by time!
! ! r := RotationMatrix(t);!
! ! v := r * v;!

...and rotate them

13(77)13(77)

Information Coding / Computer Graphics, ISY, LiTH

but we want a smooth gradient field!
!

Method: Sample Perlin noise at low frequency.

14(77)14(77)

Information Coding / Computer Graphics, ISY, LiTH

Use moving gradients for making
particles travel

Other applications!
!

Painting images!
!

Simulating water, fire. lava...

15(77)15(77)

Information Coding / Computer Graphics, ISY, LiTH

I followed some particle trails!
!

No wonders here but interesting

16(77)16(77)

Information Coding / Computer Graphics, ISY, LiTH

Example from "The Coding Train"
presentation!

!
Painting images by particle trails

17(77)17(77)

Information Coding / Computer Graphics, ISY, LiTH

curl noise!
!

Related concept!
!

Also works from the gradient of the noise with
movement along the gradient!

!
Moving particles as above

18(77)18(77)

Information Coding / Computer Graphics, ISY, LiTH

Related to above!
!

curl noise promises to be free of "traps" where
particles are stuck

https://al-ro.github.io/projects/curl/

19(77)19(77)

Information Coding / Computer Graphics, ISY, LiTH

You can also make a continuous flow!
!

Copy texture value from a step "uphill" in the flow!
!

Requires ""render-to-texture" (coming soon)

My test was so-so, but...
20(77)20(77)

Information Coding / Computer Graphics, ISY, LiTH

Multi-level, FBM based flow noise!
!

Described in the book. Makes the flow more complex.!
!

Work as before, double the resolution, half amplitude!!
!

"Pseudoadvection" in the book based on this.!
!

Models fluids and smoke!

21(77)21(77)

Information Coding / Computer Graphics, ISY, LiTH

Example from the book!
!

IMHO not clearly explained but looks like continuous flow

22(77)22(77)

Information Coding / Computer Graphics, ISY, LiTH

Image from a flow noise "turbulence" example movie

Better "turbulence"!
!

From a demo movie of unknown source

23(77)23(77)

Information Coding / Computer Graphics, ISY, LiTH

Particle systems
Spectacular effects with little effort!!
!
Many small moving objects.!
!
• Explosions!
• Water!
• Fire!
• Snow !
• Rain

We were moving particles around... so let's consider

24(77)24(77)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

Example: Water

No randomness - bad

25(77)25(77)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

Example: Water

26(77)26(77)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

• Initial position!
• Initial speed (usually with some randomness))!

!
• Movement (usually independent, physically

realistic or following noise functions)!
!

• Termination rule (e.g. hits ground, fades away
after some time...)

27(77)27(77)

Information Coding / Computer Graphics, ISY, LiTH

Particle system on GPU!
!

We need some tools:!
!

• Billboards!
!

• Instancing!
!

• Render to texture

28(77)28(77)

